
Journal of Economic Perspectives—Volume 37, Number 2—Spring 2023—Pages 203–230

TT he event study model is a powerful econometric tool used for the purpose of he event study model is a powerful econometric tool used for the purpose of 
estimating dynamic treatment effects. One of its most appealing features is estimating dynamic treatment effects. One of its most appealing features is 
that it creates a built-in graphical summary of results. In one of the earliest that it creates a built-in graphical summary of results. In one of the earliest 

papers in labor economics to use an event study model, Jacobson, LaLonde, and papers in labor economics to use an event study model, Jacobson, LaLonde, and 
Sullivan (1993) sought to estimate the loss of income after being displaced from a Sullivan (1993) sought to estimate the loss of income after being displaced from a 
job. Figure 1 reproduces a graph from that paper.job. Figure 1 reproduces a graph from that paper.

The x-axis is measured in “event time,” meaning that for each person, the time 
of job displacement is treated as zero. The time-zero event is often referred to as 
the “treatment”—that is, the event or policy that changed what otherwise would 
have happened. The y-axis of the picture shows income for each period relative to 
a baseline comparison period. In this example, the baseline is more than five years 
prior to the job displacement.

The change after the event time of zero is the key takeaway from an event study 
picture, but the picture also reveals other rich patterns of behavior. For example, 
it also shows patterns before the event. Ideally, we hope that the line before the 
event is trendless, and deviations from that pattern alert us to a potential problem 
with our model; in particular, a trend suggests that the treatment may have been 
expected or that other factors are in play. In Figure 1, we see a modest deterioration 
in earnings in advance of the layoffs. This may reflect the presence of third factors—
say, perhaps declines in demand for the output of a certain industry—that affect 
earnings prior to the event and that ultimately contribute to the displacement. 
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Alternatively, if displacement was anticipated and resulted in discouragement, this 
could lead to a pre-event trend through reductions in labor supply. The figure 
shows a modest pre-event trend, but also shows a sharp drop in earnings at the time 
of displacement, followed by a bounce back over the next two years that levels off at 
an earnings decline of about $500 to $1,000 per quarter compared to the pre-event 
level.

Event study models in economics started with finance applications: for a survey 
of earlier event studies in finance, see MacKinlay (1997). His earliest example is 
Dolley (1933a, b), who examines the effect of stock splits on trading activity, divi-
dend payout rates, and market returns. In recent years, event study models have 
been growing in popularity. Currie, Kleven, and Zwiers (2020, Figure 4c) summa-
rize trends in working papers from the National Bureau of Economic Research 
(1980–2018) and papers published in top economics journals (2004–2019). They 
document a sharply increasing share of papers using event study approaches, with 
an inflection point around 2012. Typically, event study models are estimated in 
a reduced-form “treatment effects” context.1 Applications of event study models 
vary broadly, from job displacement (as in Figure 1), to school finance reform 

1 They can also be used to estimate statistical moments, which in turn can be used to estimate a structural 
model, as in Finkelstein et al. (2022).

Figure 1 
An Event Study Example: Loss of Income after Being Displaced from a Job

Source: Jacobson, LaLonde, and Sullivan (1993).
Note: Figure reproduced from Jacobson, LaLonde, and Sullivan (1993). The x-axis is measured in “event 
time.” The y-axis show income for each period relative to a baseline comparison period more than five 
years prior to the job discplacement.
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( Lafortune, Rothstein, and Schanzenbach 2018), to the effect of trade liberaliza-
tion (Braun and Raddatz 2008).

Behind the scenes of the easily digestible event study picture, a researcher 
needs to make a number of choices. Some choices are as obvious as the question 
of how (or when) to deal with pre-existing trends like those shown in Figure 1—
and indeed that figure shows different estimates if the pre-event trend is taken into 
account—and some are more subtle, but researchers are often insufficiently clear 
about the choices they have made. In this essay, I discuss the range of decisions that 
go into an event study model, and in this way I aim to improve the understanding of 
these models for researchers, teachers, and consumers of this research.

For those who wish to dig a few layers deeper, a set of online Appendices provide 
more detail along with graphic examples and underlying code on related topics, 
such as connections from event study to difference-in-difference models, showing 
event study results in a way that is closer to raw data, pooling event study coefficients 
or using splines over event times to improve efficiency, additional considerations 
when controlling for pre-event trends, and other topics.

Core Features of Event Study ModelsCore Features of Event Study Models

An event study model has two key elements: the estimating equation and the 
structure of the data.

Estimating EquationEstimating Equation
The traditional approach to estimating an event study model is shown in this 

equation. We have units i and calendar time periods t; in the original example, the 
units are workers and the time period is calendar time (for example, earnings in the 
first quarter of calendar year 1982).

   y it    =     (  ∑ 
j∈{–m, …, 0, … ,n}

  
 

     γ j   ·  D i,t–j  )   


    

Event Study Terms

     +      α i   +  δ t   
⏟

   
Panel Fixed Effects

    +     β ·  X it   
⏟

    
(Optional) Control Variables

    +   ϵ it   .

On the left-hand side, the y variable shows the outcome. On the right-hand 
side, Di,t−j is an indicator variable for event time j, meaning that the event took place 
j periods before this observation’s calendar time. A separate term is included for 
each event time. The key features of this specification are the γj · Di,t−j terms. The 
coefficients after the event has occurred (γj for j ≥ 0) capture the dynamic effects of 
the treatment as these effects manifest over time since the event. The terms γj for 
before the event has occurred (for j < 0) provide a placebo or falsification test. In 
the absence of anticipation effects, model misspecification, or omitted confounding 
variables, these pre-event terms should not have a trend in j. Together, this part 
of the regression equation terms will trace out a graph similar in appearance to 
Figure 1, measured in event time.



206     Journal of Economic Perspectives

The index t represents the “calendar time” in which we observe the outcomes. 
The index j represents time-since-event, or “event time.” In Jacobson, LaLonde, Jacobson, LaLonde, 
and Sullivan (1993),and Sullivan (1993), event time would be interpreted as, for example, “two quarters 
after job displacement” (for j = 2). In many applications, with at most one event 
per unit, we can designate the “Event Date” Ei, which is the date that the event 
occurs. The connection between these three variables is j = t – Ei. However, names 
and labels for the {t, j, Ei} variables are not standardized across the literature. As 
you read event study papers, take care to check your understanding of what names 
and labels are used for each time concept. The constants m and n determine the 
endpoints for the estimated event study terms.2

Event study models are estimated on data that have a panel structure. It 
is conventional to add two sets of fixed effects, αi and δt , for unit and time fixed 
effects. These serve the role of controlling for confounding omitted variables that 
vary at the unit or time level. Using this two-way fixed events approach helps to isolate 
the effect of the event. The outcome variable yi,t may also be influenced by other 
underlying factors. Thus, some event studies add other control variables Xit.

Sometimes our events occur at a different level of aggregation than our data. 
For example, perhaps an event occurs at the state-year level and we are working 
with a repeated cross section of individual-level data. It is okay to define the event 
dummies based on the state-year variation and to keep our regressions at the indi-
vidual level (incorporating cluster- robust standard errors so that inference accounts 
for the more aggregated level of the event study dummies and their correlation over 
time within a state). This approach can be useful if we want to control for individual-
level covariates; that is, even though we are working with a repeated cross section of 
individual-level data, we still conceptually have a panel at the state-year level. It can 
also be okay to first aggregate our data up to the state-year level and then run the 
model at that level. This makes the dataset more manageable. If we do this, I think 
it makes sense to weight our aggregated observations by the population represented 
in each state-year cell in order to get closer to results we would have obtained from 
the micro data. 

Event Study Data StructuresEvent Study Data Structures
In the panel data used by event studies, units may have an event (in the basic 

model) or else multiple events (in a more complex model) that occur at certain 
dates. An event study data structure can be defined based on an understanding of 
the unit types in your dataset. Two key questions are: (1) Are there “never treated” 
units or not? (2) Is there (a lot of) variation in the treatment date across units? 
A researcher needs for the answer to one or both of these questions to be “yes.” 
The combined answers to these two questions represent different data structures, 
with corresponding differences in the thought experiment behind identification 
of the treatment effect coefficients. A key theme in this paper is that the options, 

2 In some applications, the time variable t is based on birth cohorts instead of calendar time. This possi-
bility is discussed further later in the paper. 
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guidance, and conclusions for an event study can depend on the data structure with 
which we are working.

Table 1 lists the possibilities. In the top-left corner, if we answer both questions 
with “no” we have only treated units and they share a common event date. In this 
setting, we cannot separate the effects of the event from other confounders that 
occur in calendar time, and so cannot identify treatment effects.

If we answer “yes” to the first question and “no” to the second question, then 
the data include both treated and untreated units, while all treated units share a 
common event date. The never-treated units help to identify the change in counter-
factual outcomes across calendar times. Then the treatment effects can be estimated. 
In the canonical event studies graph, the treatment effects line represents allowing 
for over-time changes in the treated group and over-time changes in the untreated 
group and then looking at the differences between these changes.3

In the timing-based data structure, there are only treated units and the event 
dates vary. A leading example is when different geographic units (or perhaps indi-
viduals) all experience the same policy change or treatment, but they experience 
the change at different (event) dates. Here, the underlying thought experiment 
is that the timing of the event is as good as random, and so those treated earlier 
or later can serve as controls for one another. Dobkin et al. (2018) have a timing-
based data structure in their study of the effects of hospitalizations on expenditures 
and labor supply. All of the individuals in their study experience a hospitalization, 
but they do so at different times.

Sometimes with this data structure, researchers make descriptive event study 
graphs that omit calendar-time fixed effects and unit fixed effects. For example, 
Card, Heining, and Kline (2013) track German workers who transition jobs 
across firms, based on the quartile of wages at the old and new firm. In a 

3 Indeed, the event study specification is a generalization of a standard two-way fixed effects difference-
in-difference specification:

yit = γ · Treatedi · Posti,t + αi + δt + β · Xit + Eit.

Here Treatedi is a binary variable for units that ever receive treatment, and Posti,t is a binary variable that 
indicates that treatment has occurred. If we restrict the pretreatment coefficients from the earlier equa-
tion to be zero, (γj = 0 for j < 0), and restrict the post-treatment coefficients to have the same value (γj = γ 
for j ≥ 0), then the traditional equation approach shown earlier and this regression here are equivalent.

Table 1 
Data Structures for Event Study Estimation

Only Ever-Treated Units There are Never-Treated Units

Common Event Date N/A DiD-type
Varying Event Date Timing-based Hybrid

Note: Author’s proposed labels for event study data structures, based on whether the analysis data sample 
uses never treated units or not, and on whether treated units have a common event date or varying event 
dates. “DiD-type” = “Difference in Difference type.”
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separate example, Chetty et al. (2014) track Danish workers who transition to jobs 
with greater defined contribution pension shares. The event study graphs shown 
in these two examples are essentially expanded pre-post designs. Their credibility 
comes from three factors: (1) an a priori expectation that the pre-move outcome 
provides a reasonable counterfactual, (2) the visibly flat pre-trend in the raw data, 
and (3) the stark jumps at the time of job transition. These graphs have no unit or 
calendar-time fixed effects and are based on balancing the dataset in event time 
rather than calendar time.

The data structure might combine variation in event dates and both treated 
and untreated units. I label this the “hybrid” data structure, and it will include both 
sources of identification: the comparing of treated and control units and timing-of-
event. This data structure is common in event studies. One application that employs a 
hybrid data structure is the Jacobson, LaLonde, and Sullivan (1993)Jacobson, LaLonde, and Sullivan (1993) study mentioned 
above. They pool data on workers who were displaced at different dates from their 
jobs as well as workers who were never displaced. Another example is  Lafortune, 
Rothstein, and Schanzenbach (2018), who examine the impact of state-level school 
finance reforms on funding and test scores. They have 26 states which implement 
reforms, across a wide range of implementation dates spanning 1990–2011. They 
also incorporate states without reforms in this period into their analysis.

Estimates from the hybrid data structure can be (informally) compared to esti-
mates relying solely on the timing-based subset of the data (estimated using only 
ever-treated units) to see whether the different sources of variation are producing 
similar estimates. So far, I have not seen a formal approach or recipe for making 
this type of comparison, but I think it could be a useful addition to our standard 
practice.

When carrying out or interpreting an event study, it is important to be 
explicit with your reader about the data structure. It is also best practice to show 
your reader the distribution of observations across event times in your sample. 
In Appendix A, I place these data structures in the context of related difference-
in-difference models. I also illustrate a couple of graphical ways of showing the 
variation in your unit types and other key aspects of your data structure.

Parameter RestrictionsParameter Restrictions
The basic event studies model includes more parameters to estimate than 

is possible. Remember, the total number of parameters comes not just from the 
γ parameters for the treatment effects over each time period, but also from the 
α and δ fixed effects parameters on units and times and potentially from more 
parameters if the researcher decides to include additional control variables. More 
important than a simple count of parameters is the fact that the event-time dummies 
are multicollinear with the combination of unit (for example, state-level) and time 
(for example, calendar year) fixed effects.4 To proceed, we need some restrictions 

4 This multicollinearity is due to the fact that event time, calendar time, and event date are connected by 
j = t − Ei, and that event dates can be defined by unit dummies.
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on these parameters. It is useful to group these restrictions into three (potentially 
overlapping) categories: (1) standard restrictions on panel fixed effects parameters; 
(2) restrictions that help to define our desired counterfactual; and (3) potential 
additional restrictions that are required to address concerns about multicollinearity.

In an event study model, the event-time coefficients γj in the traditional equation 
approach shown earlier are our main coefficients of interest. They estimate the treat-
ment impact j periods after receiving treatment. This treatment impact needs to be 
defined in reference to a specific counterfactual. That definition is embodied in 
parameter restrictions. For example, we might think of a difference-in-difference-
type counterfactual as “compared to a pretreatment period, how much change we 
would have expected to have occurred in the absence of treatment.” Thus, probably 
the most common normalization is to choose a specific pretreatment event time 
and normalize the corresponding coefficients to average to zero. For example it is a 
common choice to set γ−1 = 0, by excluding the dummy variable for the j = −1 event 
time from the regression. Alternatively, we might have experimental assignment to 
treatment and control unit types. In this case, our normalizing assumption might be 
that those in the untreated group can serve as a control group for those who are 
treated. We would, therefore, have all of the event-time dummy variables but omit 
the unit fixed effects, setting αi = 0.

Multicollinearities abound in event study models. At a basic level, the sum of 
the unit dummies is equal to one, and the sum of the calendar-time dummies is 
equal to one. This introduces a multicollinearity between these two sets of dummies 
as well as the intercept, typically requiring dropping one from each set. There is 
also an additional multicollinearity between the event-time dummies Di,t−j and the 
unit and calendar-time dummies. Sometimes, once we have made basic restrictions 
on fixed effects and to define the counterfactual, the remaining parameters in 
the model can be identified and we are good to go. But this is not always the 
case. The problem of multicollinearity is especially prevalent in a “timing-based” 
data structure, where all units are treated but their event date Ei varies. In this data 
structure, the event-time dummy variables, unit dummy variables, and calendar-
time dummy variables will have one or more additional multicollinearities, and so 
additional restrictions are needed in order to proceed.5 The problems of multicol-
linearity also compound when we directly add in unit-specific time trend controls.

How should we implement our additional required parameter restrictions? In 
current practice, a common approach is to let the software (like Stata) automatically 
choose some collinear variables to drop, with unknown and possibly problematic 
implications. This approach should be avoided, and my recommendation is to 
check your regression output carefully to ensure that no variables are being unex-
pectedly dropped.

5 See Proposition 1 in Borusyak, Jaravel, and Spiess (2022) and section 2.4.2 of Schmidheiny and Siegloch 
(2023). I discuss the number of needed parameter restrictions further in online Appendix B.1 and 
different examples are illustrated in online Appendix C.2.
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Another common approach is to pool some of the data by grouping several of the 
treatment variable γ’s in the tails to be equal. In the traditional event study equation, this 
would mean including an “end-cap” dummy variable such as Di,t   ≤Ei   −m, indicating “the 
event will happen m or more periods in the future.” This approach can sometimes 
be okay, but it can be problematic if there are uncontrolled-for underlying trends 
or (for a posttreatment end cap) if the treatment effects themselves are trending. It 
should only be used if these concerns seem unlikely to be important. As an alterna-
tive, it is possible to apply milder but still-useful constraints. For example, you can 
focus your parameter restrictions on the pre-event coefficients. I discuss “end caps” 
more in the next section.6

It’s not always obvious when our model is okay as is or when additional 
restrictions are needed. When researchers need to impose additional restrictions 
to identify the model, we should keep in mind the following: (1) these are not 
merely formalities—the treatment effect coefficients γj we estimate are directly 
dependent on the restrictions imposed; (2) these restrictions are untestable, at 
least in part; and so (3) we want for these to be as uncontroversial and “obvi-
ously true” as possible. Indeed, (4) because of the “multicollinearities abound” 
nature of some event study data structures, our main estimates of interest can 
be unexpectedly sensitive to these extra restrictions. This can result in (5) “small 
bits of noise” propagating through our model in unexpected ways. This last fact 
can sometimes argue for employing additional restrictions beyond what would be 
minimally necessary.

My main recommendation is to be clear and explicit about what restrictions 
are being imposed. Going forward, it would be useful if all event studies would 
clearly report (1) the number of categories for each group (time, unit-type, or unit) 
of dummies and/or event study coefficients, both the total possible as well as those 
that are included in our actually estimated specification (after variables are dropped 
due to collinearity); (2) the constraints we (or our statistical package) impose on 
the estimation, either directly or through dropped terms; and (3) a direct assess-
ment of the identifying variation in your data structure (for example, by computing 
the rank of the relevant proportion of your X matrix).

Event Study Specification ChoicesEvent Study Specification Choices

This section outlines some of the main specification choices to be made when 
estimating event study models and discusses the trade-offs involved.

Choice of Pre-event Reference PeriodChoice of Pre-event Reference Period
When estimating an event study model, a common choice is to use “one period 

before treatment” as a normalization, so that the γ−1 coefficient is set equal to zero 

6 In online Appendix B.2, I offer more detail and examples for parameter restrictions, including some 
discussion of useful Stata commands.



An Introductory Guide to Event Study Models     211

in the time period immediately before the event. In the traditional event study 
equation presented earlier, this is implemented by dropping the -1 event-time 
dummy variable. But instead of blindly choosing the period immediately before 
the event for the normalization, it is better practice to make a judgment call as to 
what is a reasonable pre-event window, balancing considerations of “close enough to 
be the appropriate counterfactual baseline” and “more data allows for more preci-
sion.” Then all of the event dummies can be included and the γj coefficients 
constrained to average to zero within the pre-period window.

How long of a pre-event window should a researcher choose? There is no 
hard-and-fast rule. I think it is useful to consider the pre-event window you would 
choose if you were estimating a simple difference-in-difference model. If you chose 
just one pre-event-time period, you might be worried about the extra statistical 
noise this would bring. As your pre-event window extends farther back, at some 
point you might get increasingly worried that those time periods become less 
appropriate for your counterfactual. In the end, for your difference-in-difference 
model you would make a judgment call, trading off these two considerations. It 
seems sensible to have this same judgement call inform your choice of the pre-
event reference period.

Normalizing to zero over several event times, rather than just the period 
immediately before the event, has two effects on the canonical event studies graph. 
Choosing a longer time period has the effect of shifting the whole pattern of 
coefficients up or down—while retaining the same shape. The other effect is 
that when a more extended reference period is used for normalizing to zero, the 
standard errors can be noticeably smaller. The reason is that when using a single 
reference time period there is additional uncertainty driven by the noise in this 
term on its own, which tends to make the standard errors larger.7

If we normalize to a broader reference period, our search for a trend before the 
event will manifest itself differently than if we had normalized the –1 coefficient to 
zero. We need to assess the overall trend in coefficients rather than examine point-
wise coefficients and their difference from zero. ( This is also illustrated in online 
Appendix C.1.)

When we suspect (or see) a dip in outcomes shortly before the event, we might 
speculate that this is driven by some process that is bundled with the event and 
which is playing out shortly before the event as it is recognized in our dataset. In this 
case, we probably do not want to use the period of the dip as our counterfactual 
baseline because it is actually part of the treated period, even though nominally 
it’s before treatment.8 Instead we could define our baseline counterfactual to be a 
period prior to the beginning of the dip. For example, in Figure 1 we see a dip in 

7 This is illustrated in online Appendix C.1. Also, online Appendix C.2 illustrates the potential impact of 
different normalizations within a timing-based data structure.
8 A dip that occurs just before the event is sometimes called “Ashenfelter’s dip,” after Ashenfelter (1978), 
who studied the impact of job training on earnings. Ashenfelter’s models were not presented in the now-
traditional event study graphical format, but his table’s results have an event study framing, including 
showing a pretraining drop in earnings.
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earnings prior to the layoff. Inspection of the figure suggests that we would want 
to have our reference period be at least one year prior to the layoff. In Jacobson, Jacobson, 
LaLonde, and Sullivan (1993)LaLonde, and Sullivan (1993), the authors chose “5 or more years prior to the 
layoff” as the reference period.

Show More than the Estimated Treatment EffectsShow More than the Estimated Treatment Effects
An event study provides a treatment estimate as a single set of numbers. However, 

it is good practice to get closer to the raw data by also reporting a combination of actual 
and counterfactual average outcomes separately for each unit type. These graphs will 
complement each other in terms of the information provided. For example, when the 
event study allows comparison of treated and untreated units, this presentation allows 
readers to assess whether the unit types experience parallel trends during periods 
when treatment status is unchanging. Both the difference in levels and in the trends 
can provide important context for interpreting the treatment effects.

We can also add to this plot a line for the counterfactual untreated prediction 
that applies to the treated units. To generate this, here are the appropriate steps: 
(1) estimate the event study model; (2) “zero out” the event-time dummies and 
make predictions; (3) average these predictions within calendar time for the treated 
units; and (4) plot out this counterfactual. This calculation lets us see both the raw 
data and the estimated treatment effects. It also implicitly shows the content of 
the normalizing restrictions of the model. For example, if we are normalizing the 
pre-trend in event studies coefficients to be zero and are controlling for unit-type 
trends, this will show up in a trending counterfactual line. For timing-based or 
hybrid data structures, this lesson is slightly more complicated to apply. However, 
the researcher can still plot the average time series for each unit type and then 
supplement this by adding the counterfactuals for each unit type. ( These ideas 
are illustrated in Appendix D.)

Choices with Control Units: Selection and Re-weightingChoices with Control Units: Selection and Re-weighting
Suppose that we are carrying out an event study that includes both treated 

and untreated units (for example, individuals or states), with untreated units as the 
control group. However, sometimes we might worry that the never-treated units could 
be problematic comparisons for the treated units. For example, Krolikowski (2018) 
reconsiders the Jacobson, LaLonde, and Sullivan (1993)Jacobson, LaLonde, and Sullivan (1993) example that generated 
Figure 1 presented earlier. In the 1993 paper, the event is “first observed layoff”; 
never-treated units are therefore individuals who never experienced a layoff. 
However, subsequent layoffs can only occur for the treated group. Thus, there 
is a mechanical difference in the future earnings potential of the treated group 
compared to the control observations, above and beyond the effect of the first layoff 
under consideration. In addition, the control group may be positively selected with 
regard to unobservable skill, labor force attachment, and/or job match quality. In 
this setting, those who are never laid off may not provide a good counterfactual for 
outcome for treated individuals; indeed, the use of this control group could make 
the impacts of the layoff look worse than they actually are.
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There are a range of options to have the control units (for example, individuals 
who did not experience job displacement) offer better counterfactuals, with the 
overall goal of making the assumption that “the control units tell us the counterfac-
tual over-time changes” more plausible. First, a researcher might exclude a subset 
of the control units because they are in some way unrepresentative or because they 
experienced unusual shocks. For example, if you are working with a city-year panel, 
and your treated cities are all medium- or large-sized, then you might consider 
excluding small cities from the control units that you use. Second, for the time 
periods before the event, it is possible to check for parallel trends between the 
control and treated units. Third, one can look at the degree of similarity between 
treated and control units along a number of dimensions, using covariates.

Finally, the researcher might use a reweighting or matching procedure prior to 
estimation of the event study. A reweighting procedure would apply different weights 
to the never-treated units so that the covariates match the treated units. In a study 
of the impact of the introduction of the Legal Services Program (during the 1960s) 
on demographic outcomes, Goodman-Bacon and Cunningham (2019) observe that 
untreated counties are different in their observables compared to treated counties. 
To address this, they estimate a cross-county first stage model to obtain propensity 
scores (specifically, the probability of being a treated county). They then re-weight 
the control counties to be more representative of those treated.9

An alternative is to choose one or more never-treated “matches” for each 
treated unit. These matches would typically be made based on observable covari-
ates, possibly including some values of pre-event outcomes. Some practitioners 
choose to combine these approaches with assigning a pseudo-event time to each 
control unit, in an effort to present a more plausible counterfactual outcome path. 
I am not aware of a systematic look at possible trade-offs involved in the choice to 
use pseudo-event times for the control units.

If an event study has a hybrid data structure, a researcher has the option of 
discarding the data from untreated units and focusing instead on a timing-based 
strategy. This approach that would be based on the belief that “among those treated, 
timing of treatment is as good as random” is more believable than the assumption 
that “control units tell us the counterfactual over-time changes.” On the other side, 
using never-treated units will bring in more data, usually improving statistical power 
and requiring fewer parameter restrictions in order to identify the model. The 
trade-off between these two considerations will vary on a case-by-case basis. What-
ever approach is chosen for dealing with never-treated units, it is useful to show 
sensitivity of the results to alternate approaches.

9 This approach could in principle also be used in situations that use only ever-treated units. If there is 
reason for concern over possible differences between, say, earlier-treated and later-treated events, We 
could use reweighting to balance covariates across “early event date” and “late event date” units prior to 
estimating the model.
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Choice of Event WindowChoice of Event Window
In some cases, data availability will limit what endpoints m and n can be used 

for the event-time window; otherwise, you need to make an explicit decision. On 
one hand, making the event window as wide as possible allows us to see a long 
path of dynamic treatment effects, and for the pre-event coefficients it gives us a 
long window to detect troublesome patterns. This consideration pushes toward 
including as many event-time lags as possible.

The main competing consideration is that we would ideally like for the event-
time coefficients γj to all be estimated off of the same set of units. For example, 
in Jacobson, LaLonde, and Sullivan (1993)Jacobson, LaLonde, and Sullivan (1993) the events (job displacements) occur 
between 1980 and 1986, and the outcome (earnings) data are observed for the 
period 1974–1986. The event-time coefficients for “zero years since displacement” 
in Figure 1 are based off of all displacements. But the coefficients for “five years 
since displacement” can only be estimated for displacements that occur in 1980 or 
1981. This means that the event-time coefficients post-displacement are estimated 
off of different sets of individuals. If there is something systematically different 
about the early- or late-displacement individuals, that could challenge interpre-
tation of the coefficients. Even without a systematic difference, there will be a 
loss of statistical power as fewer units are available to identify the more remote 
coefficients further from the event itself. These considerations suggest if possible 
choosing the endpoints of the event window so that most or all coefficients are 
identified off of a balanced set of units. It also reinforces the need to show your 
reader the distribution of data across event times (as illustrated in Appendix A).

Depending on your data setup, there may be a straightforward resolution 
of these competing concerns. Suppose that the span of event dates lies within a 
ten-year window and that you have data for at least 20 years on either side of that 
window. Then it might be easy to focus on event-time endpoints that are within 
20 years and have a fully balanced set of units for each event-time coefficient. But 
even in this case, if you observed that the interesting dynamics in terms of treatment 
effects are resolved within the first five years of treatment, it might make sense to 
limit the event window to eight to ten years, to bring more visual attention to the 
period of interest and show the leveling off.

If your data setup does not allow for a straightforward resolution, then you need 
to make a judgment call. In this case, it will be useful to offer a “robustness check” 
specification, in which you choose an alternate approach (such as a wider event 
window).

Finally, it will be important for readers of an event study to know the degree 
of balance or imbalance in the number of units available to identify the event coef-
ficients. This could be discussed in the text or presented as an appendix table 
showing the count of units, by event time j.

Special Attention for the Endpoints?Special Attention for the Endpoints?
In event studies, it will be common to have data for some units that occur 

before or after the event window. In the notation of the traditional event study 
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equation, these would be observations for which j ≤ −m or j ≥ n. We need to decide 
how to address this issue. 

One natural option is to create and include as many event dummies as possible. 
By directly estimating a γj for each event time, this removes the problem. This 
approach is natural and appropriate when the data structure has both treated and 
untreated units that are balanced in calendar time (for example, all US states are 
observed over the period 1980–2020).

A second option involves creating “end-cap” variables in the traditional event 
study equation. For example, the data before and including the “pre” endpoint 
might be given a common dummy variable, Di,t   ≤Ei   −m. Similarly the data points after 
the “post” endpoint can share a common dummy variable. I think this choice is 
the most common one, and often it is a good one. Schmidheiny and Siegloch 
(2023) recommend this approach (which they call “binning”). They note that it 
can provide a natural identifying restriction for timing-based data structures, that 
it creates a natural connection to distributed lag models, and that it can lead to a 
straightforward way to model multiple events per unit.

The main risks to creating “end caps” arise with trending counterfactuals or 
trending treatment effects. These risks are discussed further in the next main 
section of the paper on trends. That section argues that we might be hesitant about 
including “post” end caps if we think that there is a chance that treatment effects 
are changing over event time.

Another possible approach is just to drop observations that have event dates 
outside of our main window of interest. This option keeps the specification simple 
and creates a balance in event time in our analysis sample (for example, all US states 
are observed from three periods before their event to five periods after). One 
possible trade-off is that the loss of data can weaken statistical power. An additional 
consideration arises when using only ever-treated units: with this data structure you 
can be balanced in calendar time or balanced in event time, but not both. If you limit 
your sample to be balanced in event time, then this creates an imbalance in calendar 
time. This in turn means that the time dummies at the extremes will be estimated off 
of strangely selected units. Because the time dummies play a fundamental role in the 
identification of treatment effects, this approach seems risky to me.

A final option is not to include an event-time variable that is turned on for these 
faraway observations. In this way, the faraway observations are pooled together as 
part of the reference group for when the event did not happen. For example, 
the reference group in Figure 1 appears to be “more than five years before job 
displacement.” This choice can be acceptable, but you should not include both 
“before the first endpoint” (j ≤ jmin) as well as “after the final endpoint” (j ≥ jmax) 
in the same reference group. Also, you should not combine “before the first 
endpoint” with the time period before the event in the same reference group. For 
example, in Figure 1 event time –1 is not part of the reference group.

A related choice when presenting a graph of the event-time coefficients concerns 
whether and how to plot endpoint coefficients. When the endpoint has its own 
dummy variable, it will capture different averaging than the “interior” terms and will 
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sometimes appear to be offset a bit from the rest of the graph. This can distract the 
reader from the main story about what is going on closer to event time zero. On 
the other hand, including such endpoints in the graph gives a fuller picture of the 
model; indeed, including them can sometimes help to diagnose problems with the 
specification or the data. I think best practice should typically be to plot the endpoint 
coefficients and to indicate in the figure (whether with a distinct symbol and/or 
in the figure notes) that these are differently estimated from the other event study 
coefficients.

Overall, you need to explicitly decide how you will deal with the endpoints and 
inform your readers about your decision.

Pooling Event Times for Statistical PowerPooling Event Times for Statistical Power
With so many “key coefficients” to estimate, event study specifications can ask a 

lot of the data. Many event study models have pretty wide confidence intervals around 
each of the main γj coefficients. One strategy to regain some statistical power is to 
estimate models that pool together two or more adjacent event-time dummies, and 
then include these pooled variables in the model instead of the single-year event-time 
dummies. This approach strives for a balance between flexibility and statistical power. 
The main risk is that the pooling might obscure features of the empirical results. If 
you do this pooling, it is probably best to also show results from the unpooled model 
as a robustness check.

There are a variety of ways to pool event-time data. For example, one can restrict 
the model so that the coefficients will be the same in, say, periods 1 and 2, periods 
3 and 4, and so on. Goodman-Bacon (2018) uses pooled event-time dummies to 
present results in table format. A more complex alternative is to restrict the event 
study coefficients to lie on a spline function between the points—essentially forcing 
a kind of averaging across points, but allowing for a flexible functional form (in a 
piecewise linear spline, the event study coefficients are forced to lie on a connected 
set of straight lines). For example, Bailey et al. (2020) and Lafortune, Rothstein, and 
Schanzenbach (2018) use spline restrictions for improved statistical power. However, 
this approach comes with some risk of mischaracterizing the pattern of treatment 
effects, in particular if the imposed model is not flexible enough to reflect reality. 
When using splines, it can make sense to allow for a jump or break in the splines in 
the transition from pretreatment to posttreatment periods. Lafortune, Rothstein, and 
Schanzenbach (2018) implement a model with a linear trend in event time, a jump 
at event time 0, and then a separate linear trend for event times after the event. As 
with pooling, it is best practice to also show the unconstrained model as a robustness 
check. Appendix E offers examples of pooling coefficients and spline models.

The Problem of Trends in Event StudiesThe Problem of Trends in Event Studies

Trends can cause problems for event studies in two distinct ways. First, treated 
unit types might follow a different trend than untreated types in terms of their 
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untreated potential (and unobserved) outcomes, which can confound the esti-
mated treatment effects. As illustrated by Figure 1 at the start of the paper, if a 
trend is already apparent before the event, it calls into question how to interpret 
patterns after the event. Second, treatment effects themselves may be trending in 
time-since-treatment. This second possibility is not necessarily a problem for event 
study models: after all, the point of these models is to allow for treatment effects 
that vary over time. But trending treatment effects can cause problems for the esti-
mates from certain specification choices. In this section, I lay out these issues and 
some possible approaches in more detail. ( Appendix F has an expanded discussion 
and graphical illustrations for several of the main points.)

Pre-event Coefficients as a Diagnostic ToolPre-event Coefficients as a Diagnostic Tool
The estimated pre-event terms can serve as a tool for diagnosing trends. This 

is often done informally by inspecting the graph of the pre-event coefficients. This 
tool is most appropriate when working with difference-in-difference or hybrid data 
structures, which include never-treated units.

An additional consideration arises if we are working with a timing-based data 
structure with no control units. In this setting, Borusyak, Jaravel, and Spiess (2022) 
show that due to the multicollinearity of event-time, calendar-time, and unit fixed 
effects it is impossible to identify a linear trend in the set of treatment effects (or 
in the pretreatment coefficients). In this case, the best we can do is to look 
for nonlinear pre-trends. For this data structure, they recommend the normaliza-
tion of setting an additional pretreatment γ−a coefficient to be zero. This step 
imposes a zero pre-trend, and allows for visual or statistical inspection of the other 
pretreatment coefficients as a check for nonlinear pre-trends. Schmidheiny and 
Siegloch (2023) argue that using end caps can provide identification of the event-
time coefficients in a timing-based data structure. This would restore the ability to 
examine pre-event trends.

A separate difficulty is that if you have too few pretreatment periods, it 
can be hard to distinguish between actual pre-trends and statistical noise. This 
limits the comfort a researcher can take from “passing” a test of no visible pre-
trend. There is no hard and fast rule for “how few is too few.” When looking at a 
graph of event study coefficient estimates, I find it useful to mentally visualize the 
range of possible pre-trends that could be consistent with the pretreatment esti-
mates. Across papers that I see, this approach often leaves me feeling skeptical 
if I see three or fewer pre-event terms. But this depends on both the variability and 
the apparent trends among those pretreatment coefficients. If you are concerned 
about this issue, a simple additional step here is to add more pretreatment 
periods, extending further back in event time. In a more structured approach, 
Dobkin et al. (2018) plot the linear pre-trend from a parametric model on the 
figures that show event study coefficients.

Recent econometric work identifies some potential problems with using 
pre-trends as a diagnostic tool. Roth (2022) notes that the widespread, informal 
practice of “rounding insignificant pre-trends to zero” can lead to “pre-test bias.” 
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Even a mild pre-trend, which cannot be visually or statistically detected, can still 
meaningfully influence the estimated posttreatment impacts. Roth argues that if we 
are confident of the functional form of the trends (for example, that the trends 
are linear in time) we should plan always to control for trends regardless 
of whether or not there is not a strongly apparent pre-trend. He also pres-
ents more sophisticated extensions to methods of controlling for trends, based on 
Freyaldenhoven, Hansen, and Shapiro (2019) and Rambachan and Roth (2023), 
that allow a researcher to proceed under weaker assumptions about the functional 
form of the trends.

Separately, pre-trends can be biased if our underlying model is misspecified. 
Sun and Abraham (2021) examine the case where the misspecification arises from 
different unit types having different treatment effects—say, if those treated earlier 
in calendar time have larger treatment effects than those treated later in time. For 
example, suppose that in Jacobson, LaLonde, and Sullivan (1993)Jacobson, LaLonde, and Sullivan (1993) the individuals 
facing job displacement early in the sample (1980–1982) have greater impacts than 
those displaced later in the sample (1983–1986), perhaps due to changes in the 
macroeconomic environment. This difference in treatment effects can lead to a 
(spurious) apparent trend in the estimated pre-event coefficients. In this case, 
the appearance of a pre-trend is an indication that something is wrong with 
the specification of our model.10 De Chaisemartin and D’Haultfœuille (2022) 
propose alternative pre-trend estimators that are robust to different unit types 
having different treatment effects.

Controlling for Unit-Specific TrendsControlling for Unit-Specific Trends
Rather than focusing on pre-trends as a diagnostic measure, an alternative is to 

control for unit-specific trends, by including a (continuous) time variable interacted 
with unit (for example, state) dummies. This approach is suitable if we believe that 
pre-trends reflect trending omitted variables that could bias the main estimates of 
the treatment. Controlling for unit-specific trends aims to eliminate this omitted 
variables bias.

For example, Alsan and Goldin (2019) use an event study to examine the histor-
ical introduction of clean water and sewer projects across municipalities during 
1880–1920. In their specification they control for municipality-specific time trends. 
In a separate example, Bostwick, Fischer, and Lang (2022) study the impacts of a 
university switching from a quarter-based to a semester-based schedule. They want 
to make sure their estimates are not confounded by outcomes trending differently 
across universities, so they control for university-specific time trends.

What are the main trade-offs between using pre-trends as a diagnostic and 
controlling for unit-specific trends? First, controlling for unit trends changes the 
counterfactual thought experiment. Our treatment effect estimates now have an 

10 The specification error here is the assumption of treatment effects that are the same for both early and 
late treated units. This contrasts with our usual interpretation of pre-trends as indicating anticipation 
effects or different underlying trends in untreated potential outcomes.
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interpretation of “my outcome compared to the reference period, and net of under-
lying linear trends in the counterfactual between that period and now.” Second, 
because the counterfactual now controls for these trends, our pre-trends should 
look flat by construction. Thus, we lose the basic falsification test that the pre-trends 
provide in the basic model. However, one can still use the pre-event coefficients to 
look for nonlinear violations of the parallel trends assumption.

Adding unit trend controls may also interact uncomfortably with the “too 
many variables” and “multicollinearities abound” challenges of event studies. A 
unit-specific time trend term will be multicollinear with the unit dummies, time 
dummies, and event-time variables. This means that it will be necessary to add (at 
least) one more additional parameter restriction. As noted earlier, it is imprudent 
to just let our software address the collinearity problem by dropping a variable 
on its own, because what it drops might undermine our interpretation of the 
resulting estimates. The choice of which restriction to apply is guided by the same 
principle as before: the additional restrictions are untestable, but estimated coef-
ficients on the trend terms will be affected by the restrictions we place, so we 
want it to be as “obviously true” as possible. Our additional restriction should be 
applied to the event study coefficients γj so that we do not undermine the panel 
fixed effects controls in the estimation. A common choice is to impose a restric-
tion that two event coefficients are equal. The trend estimates will be estimated 
in the context of those restrictions; in particular, the later treatment estimates 
may “pivot” as a result of imposing this restriction. (This is illustrated in online  
Appendix F.)

Trends versus Pre-trendsTrends versus Pre-trends
The estimated parameters for unit-specific trends will seek to capture trending 

behavior both before and after the event. But what if treatment effects are also 
trending? Suppose that in our traditional event study equation, treatment effects are 
increasing in event time: γ0 < γ1 < γ2 . . . . Then, an estimate of unit-specific trends 
might try to fit both pre-event trends and the treatment effect pattern. This in turn can 
bias the estimated event study coefficients. This problem can occur if our parameter 
restrictions include post-event terms, such as a post-event end cap. The post-event end 
cap (for example, “six or more periods after the event”) forces all the estimated event-
time effects γj within the end cap to be the same. If instead they are truly trending, this 
can cause problems. An extreme version of this is a difference-in-difference specifica-
tion, which restricts all post-event treatment effects to be the same.

This is the main argument in the Wolfers (2006) critique of prior difference-
in-difference approaches examining the impact of unilateral divorce laws on divorce 
rates. Much of this work used state trend controls. Wolfers argues that these laws will 
have dynamic impacts—that is, trending γj for j ≥ 0. Because of this, the estimated 
state-specific time trends will be contaminated by trying to also fit the trending 
treatment impacts. This in turn will bias the main estimates. Wolfers proposes as an 
improvement a variation of an event study specification for the post-event periods. 
(I present a stylized illustration of this phenomenon in online Appendix G.2.)



220     Journal of Economic Perspectives

One option to prevent this problem is to focus on controlling for “pre-trends” 
only. However, this may require custom programming ( online Appendix F.4 
presents one approach). Another option is to model your event study terms (the 
γj · Di,t−j terms in the traditional event study equation) so that the unit-specific time 
trends will not be confounded by trending treatment effects. For example, one can 
drop all constraints on the event study parameters for posttreatment by including 
all “post” event-time dummies and having no “post” end cap. This step will ensure 
that the trend coefficients are estimated based only on pre-event data.

Recommendations in Controlling for TrendsRecommendations in Controlling for Trends
These considerations lead to guidelines for researchers who are controlling for 

trends. First, don’t let post-event parameter restrictions influence your estimated 
trends, unless you are highly confident that the treatment effects are not trending 
in that range. Otherwise, your control for trends may be picking up part of the 
trending treatment event.

Second, if one of your extra parameter restrictions is in the form of equality of 
two event coefficients, consider spacing those coefficients further apart, because the 
impact of any statistical “noise” between the two coefficients will be larger if they are 
closer together. As an alternative, focus the restrictions on event study parameters 
that allow for more averaging across units.

One restriction that accommodates the considerations above—at least for the 
difference-in-differences and the hybrid data structures—is to constrain the trend 
in the “reference period” event study coefficients to be zero. This approach has 
the advantage of averaging across several coefficients, and reducing the impact of 
noise from any one or two of them. It also respects the notion of having a refer-
ence period embodied in the normalizing restriction (as discussed earlier), and 
offers a natural counterfactual interpretation: “Compared to the level and trend in 
the reference period, and the over-calendar-time changes from control units, what 
would my expected outcome be?”11 

Finally, if we are working with a timing-based data structure, controlling for 
trends has potential to create surprising and severe problems. Adding linear trend 
controls (and the required additional parameter restriction) can induce quadratic 
trends into our estimated event study coefficients. This arises from a subtle way in 
which the event dummies are collinear with the other variables in the model (as 
illustrated in online Appendix F.2). The key lesson is to be extra cautious about the 
combination of trend controls and a timing-based data structure.

There is one way in which adjustments for trends can often be simplified 
compared to common practice: we can focus on unit-type trends, rather than 

11 Given a reference period (k1, k2), this is implemented with the following linear restriction on the event 

study parameters:    ∑ 
j=k1

  
k2

       (j –   
k1 + k2 _____ 2  )   · γj = 0. To derive this, consider a bivariate regression γj = ϕ0 + ϕ1 · j. To 

impose a zero trend, we want   ϕ ˆ   1 = 0. The left hand side of the proposed restriction is the numerator for 
the coefficient   ϕ ˆ   1.
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unit-specific trends. That is, we can allow for one shared trend parameter for each 
group of units that share an event date. This is because the event study variables 
depend only on unit type and time. Once we condition on unit-type trends, any 
remaining unit-specific trends will be orthogonal to the event study dummies and 
will not influence their coefficients.

Statistical Inference for Event Study ModelsStatistical Inference for Event Study Models

For researchers, the usual primary concern is to have unbiased point estimates. 
However, we also need to be able to conduct statistical inference to test hypotheses 
about the true state of the world.

Cluster-Robust InferenceCluster-Robust Inference
For event study models, the current practice appears to be to calculate cluster-

robust standard errors, with clusters defined as the i-level units. This starting place 
is sensible. The key right-hand-side variables in an event study have some degree of 
autocorrelation and it is plausible to think about the model error term also being 
positively autocorrelated over time within a unit. Taken together, this argues for 
clustering at the unit level. The general rule of thumb is that we want to cluster at a 
level when there is correlation in the scores (  X  i  

    ei , driven by correlation in the model 
errors e) across units in that cluster (Cameron and Miller 2015, section II.C). If the 
underlying event is shared across units, then this argues for clustering at a higher 
level. For example, if our dataset is a panel of individuals, but the event is a state-
level policy change, then we likely want to cluster at the level of the state.

However, one potential concern is that standard cluster-robust methods 
provide accurate standard errors only if the number of clusters is “large enough,” 
with no hard and fast rule for what that means. Folk wisdom and some simulations 
offer rules-of-thumb like 42 or 50 clusters, but in some settings this is not enough, 
and in other settings a smaller number will suffice. When there are too few clusters, 
traditional cluster-robust methods may over-reject. If we are facing too few clusters, 
we need to take account of this in our inference procedures (Cameron and Miller 
2015, section VI).

The problem of few clusters is exacerbated when the clusters are of asymmetric 
size or when there are very few treated units. In these settings, our conclusions 
need to be more tentative. But it is not so bad that you just have to give up. In these 
settings, the adjustments offered in Imbens and Kolesar (2016), Carter, Schnepel, 
and Steigerwald (2017), and MacKinnon and Webb (2017) might be a good 
choice.12

12 Permutation tests are an alternative approach to conducting inference. The idea is to randomly 
reassign pseudo-event dates across units, and re-estimate the model. Repeat this procedure many times, 
to construct a distribution of “estimated treatment effects, when there is no actual treatment.” A distribu-
tion of test statistics can be constructed from these permutations. The main estimates can be compared 
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The Spatial Correlation ProblemThe Spatial Correlation Problem
The basic premise of cluster-robust inference requires that clusters are indepen-

dent from one another. Spatial correlation in event dates undercuts this premise, 
and doing so may result in over-rejection of the null hypothesis. When events are 
the result of a political process or influenced by economic circumstances, neigh-
boring units (say, neighboring states) can be closer in event date than more distant 
units. Often, economic outcomes are also spatially correlated.

For the most part, the current empirical literature ignores this concern, but 
there are some potential ways to address it; for example, see Conley (1999) on spatial 
robust standard errors. However, there is little guidance on how to on measure 
“distance” across some combination of space and time.

Another possibility is to allow for arbitrary correlations in observations within 
a cluster, and also allow for correlation that decays in calendar time across obser-
vations in nearby time periods, regardless of the unit to which they belong (as 
in Driscoll and Kraay 1998). This approach allows for greater dependence across 
observations than the current standard. But there is no “button to push” for imple-
mentation of these approaches, so it will require custom programming. In addition, 
allowing for spatial autocorrelation is likely to make the “few clusters” problem even 
more salient.

For the near term, a basic precaution is to examine your data for the 
possibility of spatial correlation in event dates, although currently there is no hard-
and-fast guidance for what levels of spatial autocorrelation should be a matter of 
concern. For now, the standard practice of “cluster on the underlying event” seems 
likely to continue. However, researchers should probably start to pay more atten-
tion to spatial correlation in the future.

Extensions and ChallengesExtensions and Challenges

My discussion has focused on a basic version of event study models. In this 
section I briefly note a few of the additional extensions and challenges that may 
arise.

Events with Variable IntensityEvents with Variable Intensity
What should researchers do when events can vary in their magnitude? For 

example, suppose the event is a cigarette tax hike or an increase in the state minimum 
wage. We might want to allow for the event to scale proportionally to the size of the 
shock. This issue can be handled in a straightforward way by pre-multiplying the 

against these distributions, and if they fall in the tails of the distribution, this is evidence against the 
null hypothesis of no impact. MacKinnon and Webb (2019) study this randomization approach in a 
difference-in-difference setting with few units, very few treated units, and clusters having different sizes 
(for example, larger and smaller US states). Young (2019) also shows that randomization procedures 
(based on t-statistics) perform well. I think it likely that such results would carry over to the event study 
setting.
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event dummy by the magnitude of the event. For example, the event variable Di,s 
could be “by what percentage were cigarette taxes hiked?”

One interesting variation is found in Goodman-Bacon (2018), who examines 
the introduction of Medicaid in the 1960s across US states. The impact of introduc-
tion varied state-by-state as a function of the fraction of population that was receiving 
assistance from the Aid to Families with Dependent Children welfare program at the 
time when Medicaid was introduced. This setup combines both timing-based and 
variable-intensity variation in treatment. Concerned about event dates being corre-
lated with preexisting trends, Goodman-Bacon (2018) isolates the variation from 
variable-intensity of treatment from the timing by including dummies to control for 
event date by calendar year.

A group of recent papers center event study models within “mover” strategies. 
These include consumers changing purchase patterns as they move across locations 
(Bronnenberg, Dubé, and Gentzkow 2012) and either doctors (Molitor 2018) or 
patients (Finkelstein, Gentzkow, and Williams 2016) moving from one region to 
another with different patterns of health-care practice. These mover designs often 
pair with variable intensity of treatment. For example, Finkelstein, Gentzkow, and 
Williams (2016) track Medicare patients who move across regions with different 
intensities of medical usage. In this case the event is the move, and the vari-
able intensity reflects the difference in medical usage between the destination and 
origin locations. Molitor (2018) examines cardiologists’ patterns of practice as they 
move across regions. Again, the variable intensity of the event is given by the differ-
ence in regional patterns of practice across destination and origin locations.

More than One Event Per UnitMore than One Event Per Unit
What if there is a possibility of multiple events per unit? For example, the data 

might include repeated layoffs or repeated state minimum wage hikes.
For the basic case, this can be straightforward to implement. We define the 

event Di,s to be one in any period where an event occurs, and we allow this to 
happen in different time periods for the same unit i. Thus, more than one of the 
event-time dummies can be turned on simultaneously. Sandler and Sandler (2014) 
suggest this approach.13 However, this approach provides a specific interpretation 
of the estimated coefficients—a “partial effects” interpretation, holding constant 
the potential impact of subsequent events (including those whose existence might 
in turn be impacted by the current event). This can be different from the 
“total effect,” which includes the impact of today’s event on the likelihood of future 
events happening. Krolikowski (2018) explores this issue by using a simulation to 

13 A related but alternative approach is to duplicate data around the event. In this approach, each obser-
vation is “split” into multiple new observations based on unique combination event-by-underlying-unit. 
However, Sandler and Sandler (2014) show using Monte Carlo simulations that in some settings this can 
lead to biased estimates.
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propose a weighted average of the partial effect estimates as well as a “first event 
only” model.14 

Another approach is to adjust the definition of an event so as to have only one 
per unit. For example, in the Jacobson, LaLonde, and Sullivan (1993) paper behind 
Figure 1, the focus is on the first layoff, and subsequent layoffs are not modeled. 
This approach could be implemented based on “biggest event” or “first big event.” 
Again, issues will arise in interpreting the resulting coefficient. By bundling subse-
quent events (and their dynamic impacts) into the definition of “treatment,” we 
have a potentially nonintuitive definition of treatment—a version of the partial-
versus-total effects problem just mentioned. In some cases, this approach is 
combined with using the “never treated” group as a control group. This combi-
nation can introduce the selection issue mentioned earlier—that is, the control 
group may now differ in unobserved ways, like stronger skills or labor market 
attachment, so comparisons with them will give biased counterfactuals for the 
treated. This can make the estimated effects of the displacement look worse than 
the true causal effects. Separately, it can raise concerns about external validity of 
the findings to the broader population.

The possibility of multiple events raises the question of whether the effect of an 
event depends on the history of other events. A first layoff is one thing, but we 
can imagine that subsequent layoffs are possibly worse (increasing fragility) or not 
quite as bad (either toughening up or “floor effects”) as the first. In principle, the 
basic model could be modified to estimate sensitivity in treatment effects directly, 
based on the history of prior events, but I have not yet seen this implemented.

Heterogeneous Treatment EffectsHeterogeneous Treatment Effects
What if the effect of treatment does not just vary in “time since event,” but also 

depends systematically on the unit type, time, or context? For example, the treat-
ment effect might depend on observable variables or on the date of adoption of the 
event.

Suppose we are interested in how a treatment effect varies across men and 
women. We can then include one set of event dummies for men and another set 
of event dummies for women. More generally, we can include a set of interaction 
terms, based on the covariates that we believe influence the treatment effects. In 
taking this step, it is important to follow usual best practice for interaction terms 
in regression models, such as including direct controls for the covariates if they 
are time-varying. These interactions can use up a lot of variation in the data, and 
in response, it may be useful to impose a parametric simplification on the inter-
action terms. For example, the Jacobson, LaLonde, and Sullivan (1993) example 

14  Basso, Miller, and Schaller (2022) label the partial effect “Y channel only (YCO)” and contrast the 
Event Study approach with a Local Projections approach to estimating dynamic treatment effects. They 
observe that Local Projections can directly recover the “total effect” (corresponding to the impulse 
response) and show that it can be transformed into the YCO. Cellini, Ferreira, and Rothstein (2010) also 
address this distinction in the context of a dynamic regression discontinuity model and estimate both 
effects. They label the partial effect “Treatment on the Treated” and the total effect “Intent to Treat.”
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from Figure 1 used a parsimonious approach of having three periods of treatment 
effect: the “dip” (the 13 quarters prior to job displacement), the “drop” (the quarter 
of displacement), and the “recovery” (six quarters following displacement). They 
allow covariates to produce different slopes (in event time) for these three periods.

In a setting with varying event dates, we might want to model the possibility 
that the dynamic treatment effects depend on the timing of adoption. For example, 
US states that are early to adopt a policy might be the ones that benefit the most 
from that policy; late adopters might have less or even opposite-signed effects. One 
approach is to treat the actual event date as an observable variable and estimate 
treatment effects based on the date, or perhaps using an “early”/“late” adopter 
dummy variable. This approach should work, so long as there are control units or 
enough variation in event dates.

There is a recent, active, and promising literature on how event study models 
perform when treatment effects differ across units and when we do not know the 
functional form of how they differ. This raises issues analogous to those of local 
average treatment effects (LATE) in the instrumental variables context, in which 
our main estimates are a weighted average of the underlying treatment effects. Typi-
cally these weights might not correspond to our common-sense intuitions or to our 
desired weighting.15 This literature typically considers the case where there is (at 
most) a single event per unit. Sun and Abraham (2021) point out that the overall 
effect will be a weighted average of the heterogenous effects for different unit types. 
They show that an auxiliary regression can calculate the implied weights and also 
propose an alternative estimation method that works to recover a target average treat-
ment effect. Using a different strategy, de Chaisemartin and D’Haultfœuille (2022) 
propose relying on using not-yet-treated units and the parallel trends assumption to 
recover estimates of the treatment effects for each treated unit type, which can then 
be averaged together.

When “Time” Is Not Calendar TimeWhen “Time” Is Not Calendar Time
What if the time variable is not calendar time? This situation can arise in 

cohort studies: for example Duflo (2001) studies the life-course impact of child-
hood exposure to school availability in Indonesia based on district and year of birth, 
and Bailey, Sun, and Timpe (2021) examine the long run impacts of childhood 
exposure to Head Start in the United States, with treatment based on county and 
year of birth. These are standard event study analyses, only the time variable is “year 
of birth” instead of calendar time.

The challenge here is how best to deal with cohort, age, and time (of survey) 
effects. The basic event study specification requires fixed effects for cohort. Often 
the outcomes of interest—such as labor market or demographic outcomes—depend 

15 This theme is addressed for ordinary least squares in Angrist (1998) and Sloczynski (2022); for one way 
fixed effects models in Gibbons, Suárez Serrato, and Urbancic (2019) and Miller, Shenhav, and Grosz 
(2021); and for difference-in-difference in Goodman-Bacon (2021a), Callaway and Sant’Anna (2021), de 
Chaisemartin and D’Haultfœuille (2020), and Borusyak, Jaravel, and Spiess (2022).
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importantly on age in nonlinear ways. There can also be important calendar-time 
effects (for example, if some data is collected in a recession). This raises the challenge 
of age-cohort-time multicollinearity (as discussed in Deaton 2018, pp. 123–127).

There is no avoiding the fact that the analysis becomes complicated here. If 
theory suggests all three factors— age, cohort, and time—may be important, 
I recommend including all three sets of dummies.16 One leading alternative is 
instead to include a set of two-way interaction dummies: either age−by−cohort fixed 
effects, cohort−by−time fixed effects, or age−by−time fixed effects. Any one set of these 
two-way-interactive fixed effects controls for more, but also “uses up” more varia-
tion in the data, which raises its own issues. But it seems like good practice to at 
least include a specification with these two-way-interactive fixed effects as a robust-
ness check.

A final issue is that in producing an overall estimate, we might want to make 
sure that each cohort is weighted proportional to its population, because the 
thought experiment of the model centers on the cohorts. However, our data might 
not naturally reflect those weights, perhaps especially when we are combining data 
from different-sized datasets.17 This can set up a choice between improved statistical 
power (weighting based on the data in our sample) and improved representative-
ness (weighting based on size of cohorts), and I do not think there is currently a 
settled “best practice” for these issues. But we should think carefully about how to 
weight our observations, and not simply take the weights as they are given by the 
datasets we are using.

ConclusionConclusion

Event study models are great! But behind that attractive interpretive graph, 
researchers are necessarily making decisions. This raises risks of bias due to system-
atic (if perhaps unconscious) model selection processes, committed by either the 
researcher or the journal review process. Despite these risks, these decisions are 
unavoidable. There is no “button to push” that can automate the necessary judg-
ment calls. For now, best practice should be to increase transparency through 
bringing clarity about the specification decisions made (and the reasons for those 
decisions) and to discuss robustness to alternative decisions, along with providing 
both estimation code and (whenever possible) data for replication.

16 Sometimes researchers include only two sets of these three possible sets of dummy variables, such as 
dummies for age and for cohort. Presumably this is motivated by the collinear relationship: age = cohort 
+ time. However, among the many coefficients for the three sets of dummy variables, there is only one 
degree of collinearity. So omitting a full block of dummies—say, leaving out the time dummies—imposes 
many more restrictions than are necessary. 
17 For example, the outcome data in Bailey, Sun, and Timpe (2021) pool observations from the long-
form 2000 Census and the 2001–2018 ACS. The relatively large number of observations in the census 
means that birth cohorts from 1950 to 1965 are weighted more heavily than later cohorts, relative to 
their population size.
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Online appendix for “An Introductory

Guide to Event Study Models”

The supplemental materials for the paper contain Stata code that produces the Figures in

this appendix.
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A Data structures, and related designs

A.1 Connections to Difference-in-Difference models

Event study models fit within a family of related models that rely on a parallel trends

assumption for identification of causal effects. All of these employ panel fixed effects (or a

simplified version, such as dummies for “post” and “treated unit”) as key control variables. In

Table A.1, I summarize some related approaches within this family. The first column labels

the approach; the second column indicates the relevant estimating equation, the third and

fourth columns identify the relevant data structure.

Table A.1: Collection of ES and related models

Model Name
Estimation Event Date Never-treated

Equation Variation group(s)

1. 2x2 Difference-in-Difference DiD N/A Yes

2. 2xT Difference-in-Difference ES, DiD N/A Yes

3. NxT Difference-in-Difference ES, DiD Common Yes

4. NxT Generalized DiD DiD Varying Optional

5. Event Study, Timing based ES Varying No

6. Event Study, DiD style ES Common Yes

7. Event Study, Hybrid ES Varying Yes

The first row is the basic 2×2 difference in difference model. Here we have two units, one

treated and one control. And we have two time periods: one before treatment and one after.

Row 2 is the generalization of this where we have multiple time periods for each unit. In

this case, there is the possibility of creating an event-study type graph. The next extension

is to have many (N) units, some treated and some control; and for the treated units to have

a common event time. This is the N × T difference-in-difference setting. The essence of
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the identification is the same as the 2 × T DiD model; but the many units can allow for

difference in calculating standard errors (we can now estimate standard errors by clustering

on each unit).

The last four rows of the table are all characterized by settings where the event time

varies across units. The Generalized Difference-in-Difference estimates a single “treatment

effect” from this. This is the first model where it’s possible to have only “ever treated” units,

and to identify treatment effects based solely on the timing of the treatment. The three

event study setups build from earlier data structures, and produce our typical ES graphs.

The list above is incomplete, and there are many variations. One common situation is

when the variation in event dates Ei is neither cleanly “all at once” (Ei = E,∀i), but there

are important groupings of Ei across units. For example, a policy might be adopted by a

handful of states at different times; and then a federal policy might bring along all of the

remaining states all at once.

A.2 Showing the variation in your event dates

Because the data structure you are working with impacts specification choices, you should

clearly let your reader know which structure you have. Also, if you are working with a

timing-based or hybrid data structure, you should let your reader know the variation in the

event dates in your sample. This can be done with a tabulation of event dates, or graphically

as in the figures below. The figures represent a couple of different hypothetical data sets,

and show two ways of illustrating the data structure and variation in event date. Each pair

of graphs shows the same information in two different ways. For your paper, you can choose

whichever format you think is most clear for your readers.

Figure A.1 illustrates this for a timing-based data structure. The earliest treated units

have their event date in period 5, and the latest event date is period 15, by which point all

units have been treated. The graph on the right shows the same information, in the form of

a CDF across units of event dates.
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Figure A.1: Two ways of showing the variation in event dates: Timing-based data structure

Note: The left panel shows a histogram of event dates, with one observation per unit. The right panel shows the same
information as Cumulative Distribution Function. This data set has a timing-based data structure, with no “never
treated” units.
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Figure A.2: Two ways of showing the variation in event dates: Hybrid data structure

Note: The left panel shows a histogram of event dates, with one observation per unit. The right panel shows the same
information as Cumulative Distribution Function. This data set has a hybrid data structure, with variation in event
date among treated units, and many “never treated” units.

Figure A.2 shows a hybrid data structure. Here, half of the units are never-treated. Of

those that are treated, there is an early-block, with event dates 5-7, and a later block, with

event dates 10-12.

For each of the figures above, the two graphs on the left and right convey the same

information about the data structure. I recommend presenting one of these, choosing the

style that you think will be most informative to your readers.
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B Parameter restrictions

B.1 Timing-based Data Structures and parameter restrictions re-

quired

In DiD based data structures, in models with no trend controls, three restrictions on the

parameters are required. The regular panel fixed effects restrictions are typically (1) drop

the intercept, and (2) drop a unit fixed effect. These “make sense” and are unobjectionable.

The third restriction is (3a) the typical restriction to normalize an event time coefficient to

zero (e.g. set γ−1 = 0, or (3b) normalize an average of the “reference period” coefficients to

zero.

In timing-based data structures, things get more complicated. With two event dates,

there are the same number of “effective limiting observations”, but now one or more extra

parameters (based on Emax − Emin) to be estimated (because we have more event-time

parameters). So one or more extra restrictions are needed. In one sense, this seems worse.

On the other hand, we can still identify the same number of parameters that we could

have with the DiD structure. (What did the DiD structure have to say about the novel

parameter? Nothing.) However, the restrictions we impose on the model will impact all of

the estimated parameters. It’s not like we can say “we ignore the extra parameter” like we do

in the DiD structure; instead we have to say something like “we think its value is the same

as its neighbor”, and that assumption has implications for all of our estimated parameters.

When we add extra unit types with extra event dates (Ei), each one apparently brings

with its T new limiting observations. However, there are lots of multicolliniearities; and

so the extra information (as measured by the rank of the X matrix) typically grows by

only 2 degrees of freedom. One of these is used to identify the level shift αi for that unit

type. And if our new unit type expands the event time parameter space (e.g. by increasing

Emax−Emin) then we are left with the same number of total extra restrictions needed. This

is still a situation of “good news”; for the same number of needed restrictions we can identify
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more and more γj.

When there is a gap between Emin and Emax, the location(s) of other event dates within

this gap are important for the amount of identifying information (as measured by the rank

of the regressors X, including all the dummy variables and event dummies). The patterns

here are complex; and while I would guess that there is a closed-form solution, I am not sure

what it is. The themes appear to be: (1) information decreases (more parameter restrictions

are required) as the minimum gap mini,j (Ei, Ej) grows; (2) In a data structure with three

events, information jumps to “max” when the interior event time is just-barely-offset (by 1

time period) from the mid-point of the range; (3) more unit-types typically helps, as they

add new event dates Ei to anchor event time around, and typically narrow gaps between

event dates.

This is illustrated in Figure A.3 below. The setting here is based on a timing-based

data structure, with no “untreated units”, and a panel length of T = 20. One of the unit

types is treated at T = 4, and a second unit type is treated at T = 16. If these were the

only unit types, the model would need Emax − Emin = 12 extra parameter restrictions to

be identified. Next, we consider having a third unit type, with treatment date somewhere

in between 4 and 10. This doesn’t change the number of parameters to identify; but it can

add additional non-collinear observations. In doing so it can reduce the number of needed

parameter restrictions. Depending on when the third unit’s event date is, we can calculate

the rank of the X matrix, and compare this rank to the number of parameters in the model.

The gap between these two gives the number of additional needed parameter restrictions to

identify the model.

The blue circles in the graph show how the number of needed restrictions changes when

we add a third unit type, as a function of the timing of the event for that unit type E3.

When its event date is 4 (the same date as our first unit type), we are still in the case of

really having only two unit types, and we need the full 12 parameter restrictions. With an

event date of 5, we now need only 1 parameter restriction. The patterns of the blue circles
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Figure A.3: Strange patterns in the number of needed parameter restrictions in timing-based
data structures

Note: The y-axis show the number of additional parameter restrictions (beyond those that would be requred for a
difference in difference data structure) that are required to identify the parameters of the model. For the blue circles
(“units3”) there are three unit types. One has an event date at t = 4, and the other at t = 16. The x-axis represents
the event date of the third unit type. For the red triangles (“units4”) there are four unit types, three of whom have
event dates at {4, 10, 16}. The x-axis represents the event date of the fourth unit type.

are strange and non-monotonic. I think that explaining these is a puzzle for future research.

The red triangles expand the thought experiment to conisder four unit types. In this

scenario, the fourth unit type receives treatment at the midpoint, E4 = 10. The x-axis is

based on the location of the third unit type, and the y-axis shows the number of additional

parameter restrictions needed to identify the model. As before, the patterns are strange and

intriguing.
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B.2 Implementing parameter restrictions in Stata with cnsreg

One way to implement parameter restrictions γj = 0 is to drop the associated variable. The

most common restriction used in event study models is γ−1 = 0, and this is implemented by

excluding the -1 event time dummy variable. To implement equality of coefficients across

event times, an easy way implement this is to create a pooled dummy variable. For example

to impose γ0 = γ1, we can include a dummy variable for “event time is zero or one”. This

idea extends to the “end cap” variables that are often used.

In this subsection I discuss an alternative approach: the use of direct parameter restric-

tions in estimation. In Stata, this is implemented with the command cnsreg (“constrained

regression”). This is the command I use to create the figures in the Online Appendix, and

the supplementary materials for the paper include code which illustrates its use.

To use cnsreg, first you define the parameter restrictions in the form of linear constraints,

and then reference the constraints when calling the command. For example to implement

“set the reference period to be event times -1 and -2”, we want to constrain γ−1 + γ−2 = 0.

To implement this in Stata we do this as follows:

constraint define 1 Dm1 + Dm2 = 0

cnsreg y Dm3 Dm2 Dm1 Dp0 Dp1 Dp2 ibn.time i.id , constraints(1) collinear

One advantage of using cnsreg is that you can make sure that Stata is not dropping

unexpected collinear terms. In order to do this, you need to use the “collinear” option. And

if you are using Stata’s factor notation for your time or unit-dummies, you need to use the

no-base option: “ibn.time”.

Another use of cnsreg is to implement the proposed trend normalization in section 4.4.

of the paper. A third use can be used to implement a spline in the event time coefficients,

by imposing a “no concavity” constraint, so that the slope is equal across two segments of

the spline. For example: γ1 − γ0 = γ2 − γ1.
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For an alternative approach in Stata to estimating event study modesl, see Clarke and

Schythe (2020) who present a Stata add-on command.

C Illustration of alternative normalizations of the refer-

ence period

C.1 DiD Data Structure, alternative normalizations, and visual

pre-trends

This section illustrates some issues from Section 3.1.

In figure A.4, both graphs are estimated on the same data. They both employ one

panel-fixed-effects restriction in common: that the average unit-type coefficients are zero.

The figure on the left uses the more common event study normalization, that the coefficient

on the -1 term equals zero. The figure on the right uses the recommended event study

restriction, that the average coefficient in the reference period is zero. Here I use event times

-1 through -10 as the reference period. The difference in restrictions has the effect of shifting

up or down the whole pattern of coefficients. In this example, the shift is very small, because

the -1 coefficient is very close to the overall average for the pre-period. The other effect is on

the estimated standard errors. They are larger when using the -1 restriction, reflecting the

additional uncertainty driven by the noise in this term on its own. When the full reference

period is used, the standard errors are noticeably smaller.19

If we normalize to a broader reference period, we can still examine the pre-event coef-

ficients for a sign of a pre-trend. However, because we are normalizing these coefficients

to average to zero, the pre-trend will manifest differently than if we had normalized the -1

coefficient to zero. We need to assess the overall trend in coefficients, rather than examine
19The data in this example were selected so as to have results of statistical significance differ across the two

graphs, as a rhetorical trick to emphasize the main point. The general lesson is that using the full reference
period will (1) show increased precision, and (2) corresponds to our intuitive counterfactual, informed by
difference in difference models.
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Figure A.4: Different counterfactual normalizations

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The left panel normalizes event time -1 to zero; while the right panel normalizes the average of -10 to -1 to be zero.
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Figure A.5: Different counterfactual normalizations and pre-trends

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The left panel normalizes event time -1 to zero; while the right panel normalizes the average of -10 to -1 to be zero.

point-wise coefficients and their difference from zero. This is illustrated in figure A.5. In

this data generating process, I have added in a systematic time trend for the treated units.

The graph on the left of figure A.5 shows the expected visual evidence of this pre-

trend. The graph on the right is shifted down (because it constrains the average pre-period

coefficient to be zero). The trend is just as apparent if we examine the overall pattern of

the pre-event coefficients. If we used tests of “are these coefficients different from zero”, the

graph on the right would reject less often. But this would be the wrong criterion to use for

pre-tests. Instead we need to examine the overall pattern of the pre-event coefficients. There

is a clear steady downward trend in these coefficients. Using this criterion, there is no loss

in moving to the broader reference period normalization.
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Figure A.6: Timing-based data structure and different restrictions

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The four panels are based on different parameter restrictions.

C.2 Timing-based Data Structure: E2 = E1 + 1

In this section, we consider a timing-based data structure with two unit types. The event

dates for the two units are off-set by 1. Because it is a timing-based data structure with no

control group, in addition to the basic constraints, we need at least one more. In figure A.6

I illustrate consequences for four different possibilities for the additional constraint(s). The

first and last graphs are “just identified”; graphs 2 and 3 have extra constraints.

Model 1 uses a minimal “end-cap” constraint, on the pre-period end-cap only. It looks

okay; but shows a lot of noise, which twists the estimates about the fulcrum of the two

points in the end-cap. It might be made worse because γ−10 only comes from one unit-type.

Model 2 extends the end cap to cover 3 periods. It looks much better, as it is much flatter.
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Model 4 implements my recommended constraint that the pre-event terms have zero trend.

It also looks good, and (like model 1) is “just identified”. Model 3 looks awful; this would

be a commonly estimated model using end-caps on both ends. This example is a cautionary

tale for standard practice.

D Getting closer to raw data

This appendix illustrates how we can show both our event study estimates, and also provide

additional context by showing results that are closer to the raw data. It illustrates some of

the suggestions in section 3.2

In figure A.7, we see an illustration of showing the counterfactual alongside the raw data.

The data structure in the figure below is a Difference-in-difference data structure, with two

unit types: (1) treated units sharing a common event date, and (2) control units. The first

graph shows the estimated event study treatment effects; with the true treatment effects (the

true γj from equation 1) superimposed in green hollow dots. The second graph shows the

raw means for the treated (blue) and control (red) groups, and also shows the counterfactual

untreated prediction for this group (orange hollow dots). The counterfactual is computed

by subtracting off the estimated event-study effects (γ̂j) from the raw means for the treated

group.

Next, figure A.8 shows a similar graph for a timing-based data structure. Here we have

two treated groups, with an event date of 8 for group 1 and an event date of 12 for group 2.

Here there are two counterfactuals, one for reach unit type.

E Pooling and Splines for event study coefficients

In this Appendix section I illustrate pooling event study coefficients, and imposing splines

on event study coefficients for improved statistical power. These are discussed in section 3.6

in the paper.
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Figure A.7: Event study coefficients vs. “getting closer to the raw data”

Note: In the left panel, the y-axis show the estimated (blue) and actual (green) treatment effects (γj). The x-axis
shows event time. In the right panel, the x-axis shows calendar time. The red dots show the mean outcomes for
the control unit. The blue connected line shows mean outcomes for the treated units. The orange dots show the
counterfactual (untreated) outcomes for the treated units.
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Figure A.8: Event study coefficients vs. “getting closer to the raw data”

Note: In the left panel, the y-axis show the estimated (blue) and actual (green) treatment effects (γj). The x-
axis shows event time. In the right panel, the x-axis shows calendar time. The blue connected lines shows mean
outcomes for each of two types of treated units (who receive treatment at different dates). The orange dots show the
counterfactual (untreated) outcomes for those treated units.
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There are two way to implement pooling of event study coefficients. The first is to create

pooled event time dummies, so that one dummy represents two or more adjacent event times.

The alternative is to directly impose the pooling constraints at the point of estimation (e.g.,

using “cnsreg” in Stata). These two approaches are equivalent in standard cases. They could

differ when other constraints are added in to the model: e.g. if imposing a “no pretrends”

constraint, this could be implemented differently depending on how you are pooling.

Figure A.9 shows the impact of pooling constraints on the estimated results. For this

illustration, the true treatment effects (shown in red) are designed to have a “jump, then

decay” pattern. The top left graph shows (blue connected dots) a standard event study

model, with no pooling. The top right model pools pairs of coefficients. For example, there

is one estimate for “event time 0 or 1”, and another estimate for “event time 2 or 3”, and so

forth. There is a noticeable shrinking of the width of the confidence intervals. The bottom

left and right graphs pool sets of three and four coefficients, respectively. For example in the

bottom right graph, there is one estimate for “event time 0 through 3”, another estimate for

“event time 4 through 7”, and so on. In this example, greater averaging leads to improved

statistical power (smaller confidence intervals), but worsening ability to capture the true

dynamics of the treatment effects. To my eyes, pooling 2 or 3 event times together seems to

be the best compromise for this data.

One alternative to pooling is to implement a spline model. This can be implemented by

imposing “no concavity” constraints at the point of estimation. These constraints take the

form of, e.g., γ1−γ0 = γ2−γ1 for connected segments of event time coefficients. Figure A.10

illustrates the use of splines to improve statistical power. The top left graph is the standard

event study model with no splines. The top right graph imposes linear splines of length

three. It allows for a break in coefficients between the pre-event and post-event coefficients.

These splines improve statistical power moderately. The bottom left graph imposes splines

of length four. The bottom right graph returns to splines of length three, but has the pre-

and post-event time coefficients connected (the splines connect at the -1 segment). For this
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Figure A.9: Pooling event study coefficients

Note: The top left panel shows a standard event study model with one parameter γj per event time. The blue dots
show the estimated coefficients ( ˆgammaj), and the red dots show the true treatment effects (actual gammaj). The
top right panel pools (groups) the event study coefficients into two-periods. The bottom left panel pools into groups
of 3 periods, and the bottom right panel pools into groups of 4 periods.
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Figure A.10: Splines in event study coefficients

Note: The top left panel shows a standard event study model with one parameter γj per event time. The blue dots
show the estimated coefficients ( ˆgammaj), and the red dots show the true treatment effects (actual gammaj). The
top right panel constraints the event study coefficients to lie on a piecewise spline with segments of length 2. It allows
for a break in the spine segments between the “pre” and “post” periods. The bottom left panel uses splines with length
3. The bottom right panel returns to splines of lenght 2, but forces the “pre” and “post” spline segments to connect.

data generating process (DGP), this results in a mischaracterization of the effect at event

time 0.

F Controlling for trends

F.1 DiD Data Structure

The DiD data structure is a good place to start, because it’s easier to keep track of the

possibilities for different terms to be multicollinear with each other. The simplest case to

consider is one where we just add in one term: timet·Treatedi. However, this term is collinear
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Figure A.11: Parameter restrictions when trend controls are included

Note: Each panel estimates an event study model on the same data, which are from a DiD type data structure. The
true data generating process does not have any trends. The first graph does not include an estimated time trend for
treated units, but the other 8 graphs do include this estimated time trend. Each panel employs different parameter
restrictions in order to identify the model.

with the terms already in the model. So when we add this term some other constraint in

the model will need to be added; there is no difference in the content of the specifications.

What can be tricky is that depending on what the restriction is, the estimated event

study coefficients γ can look very different. To see this, consider Figure A.11. This shows 9

different models; many of which are equivalent.

The first graph has no trends included and serves as a baseline. Because the data gen-

erating process (DGP) here also has no trends, the event study coefficients (blue solid dots)

match the true effects (red hollow dots). The remaining graphs add in a trend term for

treated units; so each one needs one (or more) additional parameter constraints. The sec-
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ond, third, and fourth graphs each impose those parameter constraints by equating the

coefficients for adjacent terms. In the second graph we have an end-point for -10 and -9; in

the third graph we equate the coefficients for -2 and -1; and in the fourth graph we have

an end-point in the post-period, equating +8 and +9 terms. In each case, the event study

coefficients have a zero trend through the terms that are equated; and the full pattern of

coefficients pivots to reflect this normalization. As it happens, for none of these cases do the

results look satisfactory.

For graphs 5 and 6, we impose constraints with the intention of having a flat pre-trend.

Graph 5 equates the -10 and -1 terms. Graph 6 imposes a constraint that the pre-event

coefficients have a zero average trend. Both of these restrictions give results that look good.

The last three graphs build on the idea of having an end-point in the pre-period, pooling

terms. While graph 2 pooled only two terms (-10 and -9), graphs 7,8 and 9 each add in

an additional term that gets pooled in. These produce results that look increasingly good.

It might be the case that graph 9 is “too good”; once we’ve imposed that coefficients -10

through -6 are equal, and combine that with the pre-existing constraint that all the pre-

event coefficients average to zero, this might have an implicit “zero trend” constraint.

F.2 Timing-based data structures and linear trend controls

F.2.1 Two unit types

Let’s start from a data structure with two unit types, and E2 = E1 + 1. As noted above in

section B.1, we now have an extra event-time coefficient we can in principle estimate, and

so we need one additional restriction compared to the DiD data structure. Two common

choices are to equalize two or more end-point coefficients at the beginning and/or end of

possible event times; or to impose a flat pre-trend on event time coefficients.

Next we consider: what if we also want to add in trend controls? Suppose we want to

control for time · 1 (Ei = E2), which allows for a different linear time trend for the unit-

type with the later event date. It turns out that extra covariate is multicollinear with the
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covariates already included in the model, in somewhat complicated ways. If we regress

time ·1 (Ei = E2) on the RHS variables in (1), we will find that the event time γj parameters

have a quadratic function in j; the δt have an opposite quadratic function in t; and the αi

parameters have a level shift based on unit-type. The result of this is for (Ei = E1) types,

the γj and δt offset one another, leading to no trend. But for the (Ei = E2) types, their γj

parameters are off-set, and so they have a linear time trend.

This complicated multicollinearity has two implications: (1) in order to get our model

to be estimable, we will have to impose additional restriction(s); (2) these restrictions can

interact with the complicated multicollinearity to produce unusual and unsettling results.

Specifically, controlling for a unit-type linear trend can induce a quadratic relationship into

the γj and δt parameters. This can interact with the additional parameter restrictions

imposed to estimate the model in unsatisfactory ways. Even if the parameter restrictions

are “true”, the noise from the model errors will load on to the restrictions, and this can

produce wildly incorrect counterfactuals. Figure A.12 shows estimated results from four

seemingly reasonable parameter restrictions (indeed; the parameter restrictions in models 1,

3, and 4 are each consistent with the true model). None of these are very good. These weird

results depend on the shape of the true treatment effect.

Next, figure A.13 shows results for the same restrictions as above, when the true treatment

effect is a nice constant treatment effects step function. In this case, Model 2 is looking the

best. But even there it’s not so good. The take away message from this is to be extremely

cautious when working with a timing based data structure and controlling for linear trends.

F.3 Getting closer to “raw data” when there are trends and trend

controls

As in the case without trends, it is informative to show both the direct treatment effect

estimates, as well as something that is closer to the raw data. Figure A.14 illustrates this,

for three different models applied to the same data. Each model is in a different column,
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Figure A.12: Timing based data structure and unit-specific time trends

Note: Each panel estimates an event study model on the same data, which are from a timing-based data structure,
with one unit treated at t = 10 and the other treated at t = 11. The true data generating process does not have
any underlying trends. The true treatment effects (in red) follow a “ramp” pattern. Each panel includes an estimated
unit-specific time trend, and employs different parameter restrictions in order to identify the model.
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Figure A.13: Timing based data structure and unit-specific time trends

Note: Each panel estimates an event study model on the same data, which are from a timing-based data structure,
with one unit treated at t = 10 and the other treated at t = 11. The true data generating process does not have any
underlying trends. The true treatment effects (in red) follow a constant “step function” pattern. Each panel includes
an estimated unit-specific time trend, and employs different parameter restrictions in order to identify the model.
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Figure A.14: Closer to raw data with estimated trends in a DiD data structure

Note: The top row shows estimated (blue) and actual (green) treatment effects, and the bottom row shows corre-
sponding raw data (and estimated counterfactuals). Each column relies on different parameter restrictions to identify
the model. The blue dots show estimated treatment effects (top row) or raw averages (bottom row). The green dots
in the top row show the true treatment effects (γj). The red dots in the bottom row show the raw averages for the
control units, and the orange dots show the estimated “untreated counterfactual” for the treated units.

with the top graph showing the estimated treatment effects (in blue) along with the true

treatment effects (in green), and the bottom graph showing the raw data (for treated and

control units, in blue and red) and the counterfactual outcome implied by the estimated

model (in orange).

In the data generating process, the treated units have a pre-existing time trend that

is different than the control units. They additionally have a “ramp” treatment effect that

increases in time once they are treated. The first model (top left and bottom left) are based

on a model with no trend controls. This model shows the diagnostic pre-trend problem

in its estimated coefficients; and that pre-trend translates into biased estimated treatment
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effects. The second model imposes a “flat pre-trend” constraint on the estimated event study

coefficients, but does not add in estimated unit-specific trend controls. This helps with the

model fit in the pre-period; but the estimated treatment effects are just as bad as the first

model. Without direct trend controls, the constraint on the event study coefficients does not

fix the problem of trends. The third model adds in a unit-type trend variable, and imposes

the “flat pre-trend” constraint on the event study coefficients. This is the preferred model,

and it performs well. In each case, the bottom panel shows the raw data as well as the

counterfactual implied by the model.

Next we consider the case of timing-based data structures and getting closer to the raw

data. In the figure below, there are two unit types, one treated starting in period 8 and the

other in period 12. The second unit type has a different underlying trend than the first. The

figure shows three different models, one in each column. The top graph shows the estimated

event study coefficients, and the bottom graph shows the raw data for the two groups, and

the implied counterfactuals for each group.

In the first column, we do not control for any trends. The identifying restrictions are in

the form of a pre-event pooled end point, and a normalization that the mean coefficient for

the non-pooled pre-events is zero. We can see that (1) the model performs poorly, and (2)

this could be diagnosed by examining the pre-trends. The second column adds in a unit-

type specific trend shifter. Because this requires an additional constraint, it also imposes

the “pre-event coefficients have zero trend” constraint. This constraint is applied to the

same coefficients (-1 to -6) as the normalizing average-to-zero constraint. This model looks

much better; although it is not perfect. The third column adds in additional two pre-event

end-point constraints. This makes things look quite good.

F.4 Computational Issues with Unit-Specific Trends

In sistuations where it seems potentially useful to employ unit-specific trends, a useful ap-

proach is to “partial out” the unit-specific (or alternatively unit-type-specific) intercepts and
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Figure A.15: Closer to raw data with estimated trends in a timing-based data structure

Note: The top row shows estimated (blue) and actual (green) treatment effects, and the bottom row shows corre-
sponding raw data (and estimated counterfactuals). Each column relies on different parameter restrictions to identify
the model. The blue dots show estimated treatment effects (top row) or raw averages (bottom row). The green dots
in the top row show the true treatment effects (γj). The orange dots show the estimated “untreated counterfactual”
for the two types of treated units.
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trends. The partialing-out approach has the following steps. Step 1: For every variable z in

the event study formulation—that is, all the characteristics of the unit variables as well as the

indicator variables for when the event takes place, the dummy variables for each time period,

and any added control variables, regress z on a constant and time t, only for observations

in unit i. Then compute the residuals from this regression, z̃.20 Step 2: Take the residuals

from these regression equations, and then insert them into the event study model. Because

you have already adjusted for time trends in the first step, you don’t need to do any further

adjustments for time trends in the second step—which means that the set of covariates will

be modest in size. However, we need to take care in our second stage regression to impose

the same parameter constraints that would apply to the one-step approach.

One limitation of this approach as described is that it controls for “overall trends” rather

than “pre-trends,” but this approach can be modified to partial out pre-trends only. To do

so, in Step 1, estimate the model only on data up through the time period preceding the

event. Then use this model to make predictions (and residuals) over the whole time period.

For never-treated units, you can use the full time period. Step 2 is the same as described

above. Goodman-Bacon (2021b) implements a version of this approach.

F.5 Beyond linear unit-specific trends

In general, unit-specific linear time trends allow for greater modeling flexibility. But even

greater flexibility can be accommodated with more flexible unit-specific trends, like the use of

higher-order polynomial trends. The greater flexibility can be good for avoiding interpreting

secular time trends as a treatment effect. But it is a data-hungry approach, which requires

adding additional parameter restrictions. The risks of over-controlling based on data from the

post-period—and thus having estimates that are either biased, or less generalizable because

they are based on idiosyncrasies in the data—can grow with increased modeling flexibility.
20To further save computational burden, z can be partialed out just once per unit-type. If our panel is

balanced in calendar time, to save further computational burden, dummy variables for each time period can
be partialed out only once, instead of once per unit.
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An alternative approach is to control for covariates Wi that are defined at the unit level,

interacted with linear or higher-order polynomial trends in time. For a somewhat extreme

case, these covariates could be interacted with the calendar time dummies. I am not aware

of guidance for assessing the value and risks of these alternative approaches.

G Comparing DiD models and ES models

G.1 Basic comparisons

Because the Event Study model can be written as a generalization of the Difference-in-

Difference model, it is natural to compare the estimates from the two models. Roughly

speaking, our intuition is that an average of the “post” ES coefficients, minus an average

of the “pre” ES coefficients, should correspond to the DiD estimate. This lends itself to an

informal diagnostic practice, which is to compare the ES coefficients and the corresponding

DiD estimate. This can be done visually on your ES graph by plotting the DiD lines, with

the pre-treatment line set as an average of the s ≤ −1 coefficients, and the post-treatment

line set to reflect the DiD treatment estimate. If the ES coefficients and the DiD estimates

are meaningfully different, this can raise a warning flag for a potential problem, and is worth

further investigation.

Although it feels intuitive that the DiD estimates and the ES estimates should line up,

this is not necessarily the case. Several recent papers note how the two way fixed effects DiD

estimate can be written as a weighted average of underlying 2x2 comparisons across units.

In the presence of treatment effects that vary in time-since-treatment, the DiD averaging

of these may not be what we would intuitively want at all. For example, Goodman-Bacon

(2021a), Borusyak et al. (2022) and de Chaisemartin and D’Haultfoeuille (2020) all note that

the some of the underlying treatment effects can get negative weight in the averaging, which

can lead to strange results. Borusyak et al. (2022) and de Chaisemartin and D’Haultfoeuille

(2020) each propose alternative estimators that can recover the treatment effects of interest
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under some conditions.

G.2 Trending Treatment Effects can mess up a DiD specification,

when we control for unit-specific trends

This subsection further develops the discussion in the main paper’s section 4.3, which notes

that the presence of trending treatment effects and controlling for unit-specific time trends

can result in poor performance.

Figure A.16 considers a case where the treatment effect follows a “steady ramp” pattern.

The basic DiD model (equation 2 in the main text) gives a sensible approximation; an average

of the post-treatment effects. The ES model works well, as expected.

Suppose that we tried to control for unit-specific trends in our DiD estimation model.

Because the treated units are trending up in the post-period, the trends will aim to partially

capture that. This will narrow the estimated shift from pre-to-post; leading to downward

biased estimates of the treatment effects in this version of the DiD model. This is shown by

the unreasonably small estimates in yellow.

G.3 The Ben Olken Puzzle

This puzzle illustrates an example where DiD and ES coefficients give wildly different results.

In this case, the ES coefficients are valid, and the DiD coefficient gives an unreasonable weight

of zero to some of the ES terms.21

The simplest data structure to illustrate this puzzle is as follows: consider 2 units, each

treated at a different time, with 3 calendar time periods. The Event Dates vary across the

two units, Ei=1 = 2 and Ei=2 = 3. In the true DGP there are no calendar time effects or

unit-specific effects: yi,t = 1 ·Di,t−1 + γ2 ·Di,t−2 + εi,t. We consider the cases where γ2 = 1

and where γ2 = 2. We consider four estimation models, either an ES model or a DiD model,
21Many thanks to Ben Olken and Dan Fetter for conversations about this puzzle.
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Figure A.16: Estimating a DiD model with trend controls when there is trending treatment
effects can be problematic

Note: The hollow red dots are the true treatment effects (γj). The blue dots are the estimated treatment effects from
an event study model. The green line gives the estimated treatment effect from a difference-in-difference model without
unit-specific trend controls, and the yellow line gives the estimated treatment effect from a difference-in-difference
model with estimated unit specific trend controls.
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and either including or excluding calendar time dummy variables. To simplify, we omit

unit-specific fixed effects. This produces results as follows:

True DGP

Estimation Model γ2 = 1 γ2 = 2

ES Model (no δt) E [γ̂1] 1 1

E [γ̂2] 1 2

DiD Model (no δt) E [γ̂] 1 1.33 (OK)

ES Model (yes δt) E [γ̂1] 1 1

E [γ̂2] 1 2

DiD Model (yes δt) E [γ̂] 1 1 (uh-oh!!)

Here the Event Study models estimate coefficients that correspond to their true values.

The DiD model does just fine when either γ2 = 1 (constant treatment effects), or when there

are no time fixed effects modeled (in this case, it averages a treatment effect of 1 with weight

2/3, and of 2 with weight 1/3).

The problem arises in the last row, when time fixed effects are included. Here the DiD

model estimates a coefficient of 1, which places zero weight on the γ2 = 2 ES impact. What

is going on here? In the DiD model the “after*treated” coefficient is the same for both units

for period 3; and the period 3 time dummy will make sure that the average is predicted

correctly for period 3. So for period 3, two things are true: (1) there will be an unavoidable

gap between the prediction and the realized values (with errors of +0.5 and −0.5 for the

two units), and so (2) the treatment coefficient γ won’t depend on the values of the period 3

realizations. So then γ is set to fit the unit-1 period-2 value (γ̂ = 1). There is a pathological

collinearity between the time dummies and the model misspecification of the DiD model.

This example illustrates how a difference between the ES coefficients and the DiD coeffi-

cients can provide a nudge to dig deeper into the model, for a better understanding of what

variation is driving the estimated effects. In this case, the ES estimates are valid, while the

DiD estimate are distorted.
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